
DOI: 10.1007/s10092-003-0079-9
CALCOLO 40, 273 – 283 (2003) CALCOLO

© Springer-Verlag 2003

A note on computing the matrix square root

B. Iannazzo

Dipartimento di Matematica “L. Tonelli”, Università di Pisa, Pisa, Italy
e-mail: iannazzo@mail.dm.unipi.it

Received: June 2003 / Revised version: October 2003 – © Springer-Verlag 2003

Abstract. We revisit recent algorithms for computing matrix square roots
and relate them to Newton iteration. New iterations are derived and a stability
analysis is performed. A suitable scaling of an algorithm based on cyclic
reduction is introduced, which removes the slow convergence of this iteration
encountered in certain cases.

1 Introduction

Consider the matrix equation

X2 − A = 0, (1)

where A ∈ C
n×n. A solution X of (1) is called a matrix square root of A.

When A has no non-positive real eigenvalues, Eq. (1) has a unique solution
X, denoted by A1/2 and called the principal square root, such that σ(A1/2) ⊂
C

+ [5]. Here σ(M) is the set of eigenvalues of the matrix M and C
+ is the

set of complex numbers with positive real parts. In this note we assume
that A has no non-positive real eigenvalues and we are interested in the
computation of the principal square root.

The classical Newton iteration{
XkHk + HkXk = A − X2

k ,

Xk+1 = Xk + Hk,
k = 0, 1, . . . (2)

for suitable initial values X0, provides a sequence {Xk} which converges to
A1/2. This method has good properties of convergence and of stability, but it

This work was supported by MIUR, grant number 2002014121.

274 B. Iannazzo

is too expensive in terms of arithmetic operations. In fact, at each iteration the
matrix Hk which solves the Sylvester equation XkHk+HkXk = A−X2

k must
be computed. The large cost of this computation makes Newton iteration
useful only as an iterative refinement.

If we set X0 = A, then Xk commutes with Hk [4] and so (2) can be
written in a simplified form as

Xk+1 = AX−1
k + Xk

2
. (3)

Unfortunately this iteration, which is computationally simpler than (2), be-
comes unstable in most cases as pointed out by Higham [4].

Similar iterations have been designed differently, in particular, the Den-
man and Beavers (DB) method [3], based on the matrix sign function iter-
ation, and the Meini iteration [8], based on the cyclic reduction algorithm
(CR). The former generates the sequence {Yk}, which converges to A1/2,
defined by




Y0 = A, Z0 = I,

Yk+1 = 1

2
(Yk + Z−1

k)

Zk+1 = 1

2
(Zk + Y−1

k)

k = 0, 1, . . . (4)

and is based on the fact that

sign

([
0 A

I 0

])
=
[

0 A1/2

A−1/2 0

]
.

The latter generates the sequence {Zk}, which converges to 1
4A

1/2, defined
by 


Z0 = 2(I + A), Y0 = I − A,

Yk+1 = −YkZ
−1
k Yk,

Zk+1 = Zk − 2YkZ
−1
k Yk, k = 0, 1, . . .

(5)

and is based on the fact that the matrix

H0 = 1

4
A−1/2

is the block constant coefficient of the inverse of the Laurent matrix poly-
nomial

R(z) = (I − A)z−1 + 2(I − A) + (I − A)z.

The same iteration can be obtained by applying the algorithm developed in
[1] to solve Riccati equations; in fact Eq. (1) is a simple case of a continuous-
time algebraic Riccati equation.

A note on computing the matrix square root 275

Both iterations (4) and (5) have good stability properties, but the latter
is more stable and, from the numerical experiments reported in [8], in most
cases it appears to be the fastest reliable iteration designed so far.

All these iterations are strictly related to Newton’s method; in fact it was
observed that the matrix Yk generated by DB iteration coincides with the
matrix Xk generated by Newton’s method, and the matrix Zk of Meini’s
iteration is 4Xk+1. That is, (4) and (5) are two numerically different and
more stable ways to implement Newton’s iteration.

In this note we provide a direct derivation of Meini’s algorithm (5) from
Newton’s iteration and we prove its numerical stability by means of a the-
oretical analysis. Then we introduce a scaled technique which substantially
improves the convergence properties of the algorithm of [8] in some critical
cases. The numerical experiments which we have performed, reported at
the end of the paper, and the numerical experiments of [8] show that this
algorithm is a reliable tool for computing the principal matrix square root.

2 Iterations derived from Newton’s method

In this section we show how to obtain iterations (4) and (5) from Newton’s
iteration (3).

We rewrite Newton’s method (3) in a slightly different but equivalent
way: 


Hk = AX−1

k − Xk

2
,

Xk+1 = Xk + Hk,

k = 0, 1, . . . (6)

with X0 = A. We call (6) the incremental version of Newton’s method. We
prove the following preliminary result.

Lemma 1 The matrices Xk and Hk generated by (6) with X0 = A are such
that

(I) XkA = AXk,
(II) X−1

k A = AX−1
k ,

(III) HkX
−1
k+1 = X−1

k+1Hk.

Proof It follows immediately that (I) and (II) are equivalent. We prove (I)
by induction. If k = 0, X0 = A and so commutes with A. Suppose that
XkA = AXk, then X−1

k A = AX−1
k and

2Xk+1A = (AX−1
k +Xk)A = AX−1

k A+XkA = A(AX−1
k +Xk) = 2AXk+1.

Now we can show that (I) implies (III). In fact,

HkX
−1
k+1 = (AX−1

k − Xk)(AX−1
k + Xk)

−1

276 B. Iannazzo

so it is enough to prove that

(AX−1
k − Xk)(AX−1

k + Xk)
−1 = (AX−1

k + Xk)
−1(AX−1

k − Xk).

Post- and pre-multiplying both sides of this equation by (AX−1
k +Xk) yields

(AX−1
k + Xk)(AX−1

k − Xk) = (AX−1
k − Xk)(AX−1

k + Xk).

Performing all the multiplications we obtain

AX−1
k AX−1

k + XkAX−1
k − A − X2

k = AX−1
k AX−1

k − XkAX−1
k + A − X2

k ,

that is,
2XkAX−1

k = 2A

and this holds because of (I). ��
Now we are ready to derive an explicit iteration of the term Hk of the

incremental version of Newton’s method in (6). From Lemma 1 we set

Hk+1 = 1

2
(AX−1

k+1 − Xk+1) = 1

2
(A − X2

k+1)X
−1
k+1

= 1

2

(
A − (AX−1

k + Xk)
2

4

)
X−1

k+1

= 1

2

(
−A2X−2

k + 2A − X2
k

4

)
X−1

k+1

= −1

2

(AX−1
k − Xk)

2

4
X−1

k+1 = −1

2
H 2

k X−1
k+1.

This gives the following equivalent iterative formulas for the increment Hk:

Hk+1 =




−1

2
X−1

k+1H
2
k ,

−1

2
HkX

−1
k+1Hk,

−1

2
H 2

k X−1
k+1.

(7)

From these three expressions we obtain three different algorithms for com-
puting the sequence of Newton’s iteration. According to our numerical ex-
periments, the best in terms of stability is:


X0 = A, H0 = 1

2
(I − A),

Xk+1 = Xk + Hk, Hk+1 = −1

2
HkX

−1
k+1Hk.

(8)

A note on computing the matrix square root 277

By setting Zk = 4Xk+1 and Yk = 2Hk, we see that this iteration is that of
(5).

Similarly, we can derive DB iteration. In fact, with the substitutions
Yk = Xk and Zk = A−1Xk, from (6) we obtain


Yk+1 = Yk + Z−1

k

2

Zk+1 = A−1Xk+1 = A−1(AX−1
k + Xk)

2
= Zk + X−1

k

2
.

3 Stability analysis

In this section we investigate the stability of algorithm (8). More precisely,
we analyze how a small perturbation at the generic iteration step is amplified
or damped along the iteration. This analysis is important in the numerical
applications of Newton’s iteration where roundoff errors due to floating
point arithmetic may perturb the computed matrix Xk.

Let �Xk and �Hk be the perturbations introduced at the kth step of the
iteration and let

X̃k = Xk + �Xk,

H̃k = Hk + �Hk.

Here and hereafter we perform a first-order error analysis, i.e., we formally
neglect quadratic terms such as (�Xk)

2, (�Hk)
2, �Hk�Xk and �Xk�Hk.

This formal manipulation is meaningful if �Xk and �Hk are sufficiently
small. Moreover, we use the symbol

.= to denote equivalence up to within
quadratic terms in the perturbations �Xk and �Hk. We do the same with
the symbol ≤̇.

We next compute X̃k+1 and H̃k+1 starting from the values X̃k and H̃k,
where we perform our computations in exact arithmetic. Then we have


X̃k+1 = X̃k + H̃k,

H̃k+1 = −H̃kX̃
−1
k+1H̃k

2
.

For X̃k+1, we have

�Xk+1 = X̃k+1 − Xk+1 = �Xk + �Hk.

For H̃k+1 we find that

�Hk+1 = H̃k+1 − Hk+1 = −H̃kX̃
−1
k+1H̃k

2
+ HkX

−1
k+1Hk

2

= −1

2
(Hk + �Hk)(Xk+1 + �Xk+1)

−1(Hk + �Hk) + 1

2
(HkX

−1
k+1Hk).

278 B. Iannazzo

On the other hand, it can be shown that

(A + K)−1 = A−1 + A−1KA−1 + O(K2).

From this relation it follows that

�Hk+1
.= −1

2
(HkX

−1
k+1�Xk+1X

−1
k+1Hk+HkX

−1
k+1�Hk+�HkX

−1
k+1Hk).

Now, since X−1
k+1 and Hk commute, we have

‖�Hk+1‖ ≤̇ ‖HkX
−1
k+1‖2‖�Xk‖+(‖HkX

−1
k+1‖2 +2‖HkX

−1
k+1‖)‖�Hk‖,

for any induced matrix norm ‖ · ‖.
If we set αk = ‖HkX

−1
k+1‖, we obtain

‖�Hk+1‖ ≤̇ α2
k‖�Xk‖ + (α2

k + 2αk)‖�Hk‖,
but from [8] it follows that

αk = O
(
τ 2k)

with ρ(W) < τ < 1, where W = (
A1/2−I

)(
A1/2+I

)−1
and ρ(W) denotes

the spectral radius of W . Then the error ‖�Hk+1‖ is under control for large
values of k or for small τ and it tends to zero. It follows that, for large n,
‖�Xn+1‖ � ‖�Xn‖ so that the error at step k does not amplify.

4 Scaling

In this section we answer affirmatively the question set in [8] as to whether
it is possible to derive a scaling technique for the iteration (5) which holds
for other iterative methods. The scaled iteration, which we propose here, is
derived from (8). Such a scaling enables to improve the convergence of the
iterative method in a wide class of problems.

We start from the scaling parameter introduced by Byers [2] for the
matrix sign iteration and then adapted to Denman and Beavers iteration.
Even though this scaling is not optimal as shown in [7], it is easy to compute.
We recall that the scaled DB iteration [6] is:




γk = | det(Yk) det(Zk)|−1/2n,

Yk+1 = 1

2

(
γkYk + γ −1

k Z−1
k

)
,

Zk+1 = 1

2

(
γkZk + γ −1

k Y−1
k

)
,

k = 0, 1, . . . (9)

A note on computing the matrix square root 279

where Yk = Xk and Zk = A−1Xk. Rewriting this iteration in terms of the
sequence {Xk}, we obtain the scaled Newton method:




γk =
∣∣∣∣det(Xk)

2

det(A)

∣∣∣∣
−1/2n

,

Xk+1 = γkXk + γ −1
k AX−1

k

2
.

(10)

The factor γk is easily computed because det(Xk) is obtained for free
during the inversion of Xk. Scaling Newton’s method does not solve its
stability problems, but leads to a scaling for Meini’s iteration. In fact, scaling
Newton’s method is equivalent to replacing the value of Xk at each step with
a new suitable value X̂k = γkXk such that convergence becomes faster. Thus,
if in the iteration (8) we set X̂k = γkXk, then we obtain a new value for the
increment that we call Ĥk, namely,

Ĥk = AX̂−1
k − X̂k

2
= γ −1

k AX−1
k − γkXk

2

= γ −1
k

(
AX−1

k − Xk

2
+ Xk

2

)
− γk

Xk

2
= γ −1

k

(
Hk + Xk

2

)
− γk

Xk

2
.

(11)

This immediately provides the scaled Meini iteration:




X0 = A, H0 = 1

2
(I − A),

γk =
∣∣∣∣det(Xk)

2

det A

∣∣∣∣
−1/2n

,

X̂k = γkXk,

Ĥk = γ −1
k

(
Hk + Xk

2

)
− γk

Xk

2
,

Xk+1 = X̂k + Ĥk,

Hk+1 = −1

2
ĤkX

−1
k+1Ĥk.

(12)

We see in the next section how this method takes advantage of scaling
by speeding up convergence in some critical cases.

It is worth pointing out that in (12) we may replace the expression for γk

with any other formula designed for scaling the matrix sign iteration [7].

280 B. Iannazzo

5 Numerical experiments

We illustrate, by means of tests, the effects of scaling on the iteration (8). If
the matrix A has no non-positive real eigenvalues, iteration (8) has quadratic
convergence and, from [8],

‖Xk − A1/2‖ = O
(
τ 2·2k)

(13)

for any matrix norm ‖ · ‖ and ρ(W) < τ < 1, where

W = (
A1/2 − I

)(
A1/2 + I

)−1
.

This implies a slow convergence if an eigenvalue of W lies in the thin annulus
Aε = {λ ∈ C : 1 − ε ≤ |λ| < 1} for “small” ε > 0. This happens if an
eigenvalue of A1/2 lies in the pre-image of Aε under the Cayley transform

z → w = z − 1

z + 1
,

that is, if A1/2 has eigenvalue close to the imaginary axis and/or large in
modulus.

To show the effect of scaling we present an example in which the eigen-
values of A1/2 are close to the imaginary axis.

Table 1. Comparison of methods

M Ms Schur

t Iter Err Iter Err Err

1 6 1.9 × 10−16 2 1.1 × 10−16 2.1 × 10−16

10 15 5.1 × 10−14 2 1.1 × 10−18 7.9 × 10−16

102 25 2.4 × 10−10 2 1.4 × 10−16 3.3 × 10−13

103 35 4.1 × 10−10 2 7.9 × 10−17 1.8 × 10−11

104 45 6.3 × 10−9 3 1.5 × 10−16 4.8 × 10−9

105 55 1.1 × 10−7 3 1.1 × 10−16 3.9 × 10−7

106 65 1.7 × 10−5 2 1.1 × 10−16 7.3 × 10−6

107 75 1.9 × 10−3 2 1.1 × 10−16 1.3 × 10−3

Test 1 We denote by i the imaginary unit, i2 = −1, and consider the complex
matrix

K =
[

1/t + t i 0
0 1/t − t i

]
(14)

A note on computing the matrix square root 281

with real parameter t > 0; moreover, define

Y = MKM−1, A = Y 2,

where

M =
[

1 2
3 −1

]
. (15)

In this way, the principal square root of the matrix A is Y and its eigen-
values are λ1 = 1/t + t i and λ2 = 1/t − t i; for large values of t these are
large in modulus and close to the imaginary axis.

In Table 1 we compare the number of steps needed for the convergence
of Meini’s iteration (M) and the convergence of the scaled iteration (Ms)
and we report the final precision expressed through the relative error

err = ‖X − Y‖F

‖Y‖F

,

where ‖ · ‖F is the Frobenius norm. We also compare relative errors with
those provided by the sqrtm function of Matlab (Schur).

From this example the benefit of the scaling is evident. In fact, the number
of steps of the unscaled iteration depends on the location of the eigenvalues
of the square root, and grows rapidly when there are eigenvalues close to the
imaginary axis. The scaled iteration seems to overcome this problem and
does not suffer from bad positioning of the eigenvalues.

Test 2 We next consider the 5 × 5 matrix R of pseudo-random numbers

R =




0.3759 0.9200 0.1939 0.5488 0.6273
0.1099 0.8447 0.9048 0.9316 0.6991
0.4199 0.3678 0.5692 0.3352 0.3972
0.7537 0.6208 0.6318 0.6555 0.4136
0.7939 0.7313 0.2344 0.3919 0.6552




and let A = αR, α ∈ R, be the matrix whose square root we compute.
This class of matrices was considered in [8]. We can see that the number of
iterations in the scaled version of the algorithm remains constant, whereas
in the unscaled version this number grows when α is large or small as one
can see in Fig. 1.

282 B. Iannazzo

10-4 10-2 100 102 104 106 108

6

8

10

12

14

16

18

20

α

It
er

at
io

ns

Meini
Meini scaled

Fig. 1. Comparison of number of steps with (dotted line) and without (solid line) scaling

6 Conclusion

We have presented a direct derivation of Meini’s method from Newton’s
iteration for the computation of the matrix square root. We performed a sta-
bility analysis, which confirms the good numerical properties of the method,
and we provided a scaled version which overcomes the slow convergence
encountered in certain cases.

From the numerical experiments performed in [8] and in this paper, the
algorithm (8) with the scaling (12) seems to be the most reliable method for
computing the matrix square root.

References

[1] Bini, D.A., Iannazzo, B.: A cyclic reduction method for solving algebraic Riccati equa-
tions. Submitted for publication, 2003

[2] Byers, R.: Solving the algebraic Riccati equation with the matrix sign function. Linear
Algebra Appl. 85, 267–279 (1987)

[3] Denman, E., Beavers, N.: The matrix sign function and computations in systems. Appl.
Math. Comput. 2, 63–94 (1976)

A note on computing the matrix square root 283

[4] Higham, N.: Newton’s method for the matrix square root. Math. Comp. 46, 537–549
(1986)

[5] Higham, N.: Computing real square roots of a real matrix, Linear Algebra Appl. 88/89,
405–430 (1987)

[6] Higham, N.: Stable iterations for the matrix square root. Numer.Algorithms 15, 227–242
(1997)

[7] Kenney, C., Laub, A.: On scaling Newton’s method for polar decomposition and the
matrix sign function. SIAM J. Matrix Anal. Appl. 13, 688–706 (1992)

[8] Meini, B.: The matrix square root from a new functional perspective: theoretical results
and computational issues. Technical Report 1455. Pisa: Dipartimento di Matematica,
Università di Pisa 2003

	1 Introduction
	2 Iterations derived from Newton’s method
	3 Stability analysis
	4 Scaling
	5 Numerical experiments
	6 Conclusion
	References

